Modern robotic systems are required to operate in challenging environments, which demand reliable localization under challenging conditions. LiDAR-based localization methods, such as the Iterative Closest Point (ICP) algorithm, can suffer in geometrically uninformative environments that are known to deteriorate registration performance and push optimization toward divergence along weakly constrained directions. To overcome this issue, this work proposes i) a robust multi-category (non-)localizability detection module, and ii) a localizability-aware constrained ICP optimization module and couples both in a unified manner. The proposed localizability detection is achieved by utilizing the correspondences between the scan and the map to analyze the alignment strength against the principal directions of the optimization as part of its multi-category LiDAR localizability analysis. In the second part, this localizability analysis is then tightly integrated into the scan-to-map point cloud registration to generate drift-free pose updates along well-constrained directions. The proposed method is thoroughly evaluated and compared to state-of-the-art methods in simulation and during real-world experiments, underlying the gain in performance and reliability in LiDAR-challenging scenarios. In all experiments, the proposed framework demonstrates accurate and generalizable localizability detection and robust pose estimation without environment-specific parameter tuning.
translated by 谷歌翻译
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
translated by 谷歌翻译
基于相关的回声声音浮标收集的数据,这些浮标附带了热带海洋中的鱼聚集设备(DFAD),当前的研究应用机器学习方案来检查金枪鱼学校关联的时间趋势以漂移对象。使用二进制输出,将文献中通常使用的指标适应以下事实,即考虑到DFAD下的整个金枪鱼聚合。金枪鱼首次在25至43天之间进行了金枪鱼的中位时间,取决于海洋,最长的浸泡和殖民时间在太平洋中注册。金枪鱼学校的连续停留时间通常比连续缺勤时间(分别在5到7天和9天和11天之间)短,与以前的研究结果一致。使用回归输出,估计两个新型指标,即聚集时间和分解时间,以进一步了解聚集过程的对称性。在所有海洋中,金枪鱼聚合离开DFAD所需的时间并不比聚集形成所花费的时间大得多。讨论了这些结果在“生态陷阱”假设的背景下的价值,并提出了进一步的分析以丰富和利用该数据源。
translated by 谷歌翻译
由于难以获得地面真理标签,从虚拟世界数据集学习对于像语义分割等现实世界的应用非常关注。从域适应角度来看,关键挑战是学习输入的域名签名表示,以便从虚拟数据中受益。在本文中,我们提出了一种新颖的三叉戟架构,该架构强制执行共享特征编码器,同时满足对抗源和目标约束,从而学习域不变的特征空间。此外,我们还介绍了一种新颖的训练管道,在前向通过期间能够自我引起的跨域数据增强。这有助于进一步减少域间隙。结合自我培训过程,我们在基准数据集(例如GTA5或Synthia适应城市景观)上获得最先进的结果。Https://github.com/hmrc-ael/trideadapt提供了代码和预先训练的型号。
translated by 谷歌翻译
目前的地震设计代码主要依赖于结构构件的强度和位移能力,并且不考虑地面运动持续时间或滞后行为特征的影响。基于能量的方法用作响应量的补充指标,包括重复载荷在地震性能中的效果。设计理念表明,结构构件的能量耗散能力满足了地震要求。因此,应当很好地理解结构构件的能量耗散行为,以实现有效的基于能量的设计方法。本研究重点介绍钢筋混凝土(RC)剪切墙的能量耗散能力,这些剪切壁广泛用于高地震区,因为它们提供了抗侧向力的显着刚度和强度。基于机器学习(高斯过程回归(GPR))的剪力墙能量耗散能力的预测模型是墙面设计参数的函数。显示十八个设计参数来影响能量耗散,而最重要的是通过施加顺序向后消除并通过使用特征选择方法来确定预测模型的复杂性来确定。所提出的模型使稳健和准确的预测的能力基于具有预测精度的新数据(预测/实际值的比率)约为1.00的新数据和0.93的确定系数(R2)。本研究的结果被认为是(i)的基于能量的方法(i)限定了剪力墙地震能量耗散能力的最有影响力的墙壁性能和(ii)提供了能够实现不同墙体设计配置的比较的预测模型实现更高的能量耗散能力。
translated by 谷歌翻译